p-ADIC RANKIN L-SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES

نویسندگان

  • MASSIMO BERTOLINI
  • HENRI DARMON
  • KARTIK PRASANNA
  • Karl Rubin
چکیده

The aim of this article is to present a new proof of a theorem of Karl Rubin (see [Ru] and Thm. 1 below) relating values of the Katz p-adic L-function of an imaginary quadratic field at certain points outside its range of classical interpolation to the formal group logarithms of rational points on CM elliptic curves. This theorem has been seminal in providing a motivation for Perrin-Riou’s formulation ([PR2], [PR3]) of the p-adic Beilinson conjectures. The new proof described in this work is based on the p-adic Gross-Zagier type formula of [BDP-gz], and only makes use of Heegner points (as opposed to the original proof which relied on on a comparison between Heegner points and elliptic units). Hence it should be adaptable to more general situations, for example to the setting of general CM fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Computation of Rankin p-Adic L-Functions

We present an efficient algorithm for computing certain special values of Rankin triple product p-adic L-functions and give an application of this to the explicit construction of rational points on elliptic curves.

متن کامل

KATO’S EULER SYSTEM AND RATIONAL POINTS ON ELLIPTIC CURVES I: A p-ADIC BEILINSON FORMULA

This article is the first in a series devoted to Kato’s Euler system arising from p-adic families of Beilinson elements in the K-theory of modular curves. It proves a p-adic Beilinson formula relating the syntomic regulator (in the sense of Coleman–de Shalit and Besser) of certain distinguished elements in the K-theory of modular curves to the special values at integer points ≥ 2 of the Mazur–S...

متن کامل

CHOW-HEEGNER POINTS ON CM ELLIPTIC CURVES AND VALUES OF p-ADIC L-FUNCTIONS

Introduction 1 1. Basic notions 6 1.1. Motives for rational and homological equivalence 6 1.2. Algebraic Hecke characters 7 1.3. The motive of a Hecke character 8 1.4. Deligne-Scholl motives 9 1.5. Modular parametrisations attached to CM forms 10 1.6. Generalised Heegner cycles and Chow-Heegner points 13 1.7. A special case 15 2. Chow-Heegner points over Cp 15 2.1. The p-adic Abel-Jacobi map 15...

متن کامل

On computing rational torsion on elliptic curves

We introduce an l-adic algorithm to efficiently determine the group of rational torsion points on an elliptic curve. We also make a conjecture about the discriminant of the m-division polynomial of an elliptic curve.

متن کامل

Conics - a Poor Man’s Elliptic Curves

Introduction 2 1. The Group Law on Pell Conics and Elliptic Curves 2 1.1. Group Law on Conics 2 1.2. Group Law on Elliptic curves 3 2. The Group Structure 3 2.1. Finite Fields 3 2.2. p-adic Numbers 3 2.3. Integral and Rational Points 4 3. Applications 4 3.1. Primality Tests 4 3.2. Factorization Methods 5 4. 2-Descent 5 4.1. Selmer and Tate-Shafarevich Group 5 4.2. Heights 6 5. Analytic Methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012